论文标题

DeepIntent:具有E2E深度学习体系结构的基于隐式的Android ID

DeepIntent: ImplicitIntent based Android IDS with E2E Deep Learning architecture

论文作者

Sewak, Mohit, Sahay, Sanjay K., Rathore, Hemant

论文摘要

Android的意图在过程间和过程内通信中起着重要作用。在其清单中声明了应用程序可以接受的隐含意图,并且是从APK中提取的最简单的功能之一。隐含意图甚至可以实时在线提取。到目前为止,都没有探索过仅基于隐式意图开发入侵检测系统的可行性,也没有仅基于隐式意图的恶意软件分类器的任何基准。我们证明,尽管意图是隐式且宣告良好的,但它可以提供非常直观的见解,以区分恶意和非恶性应用程序。我们通过40多个自动编码器和多层pecceptron的端对端深度学习配置进行了详尽的实验,为恶意软件分类器创建了专门用于隐式意图的恶意软件分类器的基准。使用实验的结果,我们仅使用隐式意图和端到端深度学习体系结构创建一个入侵检测系统。我们获得了弯曲统计量为0.81的面积统计数据,准确性为77.2%,而在德雷宾数据集上的假阳性速率为0.11。

The Intent in Android plays an important role in inter-process and intra-process communications. The implicit Intent that an application could accept are declared in its manifest and are amongst the easiest feature to extract from an apk. Implicit Intents could even be extracted online and in real-time. So far neither the feasibility of developing an Intrusion Detection System solely on implicit Intent has been explored, nor are any benchmarks available of a malware classifier that is based on implicit Intent alone. We demonstrate that despite Intent is implicit and well declared, it can provide very intuitive insights to distinguish malicious from non-malicious applications. We conducted exhaustive experiments with over 40 different end-to-end Deep Learning configurations of Auto-Encoders and Multi-Layer-Perceptron to create a benchmark for a malware classifier that works exclusively on implicit Intent. Using the results from the experiments we create an intrusion detection system using only the implicit Intents and end-to-end Deep Learning architecture. We obtained an area-under-curve statistic of 0.81, and accuracy of 77.2% along with false-positive-rate of 0.11 on Drebin dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源