论文标题
深度神经动态贝叶斯网络应用于脑电图纺锤体建模
Deep Neural Dynamic Bayesian Networks applied to EEG sleep spindles modeling
论文作者
论文摘要
我们为单渠道脑电图提出了一个生成模型,该模型在视觉评分过程中积极执行了约束专家。该框架采用了动态贝叶斯网络的形式,在潜在变量和观察可能性上都具有深度 - 而隐藏变量控制了持续时间,状态过渡和稳健性,观察体系结构参数化正常γ分布。最终的模型允许通过利用概率模型和深度学习来将时间序列分割为本地的,重新运行的动态制度。与典型的检测器不同,我们的模型在没有预处理(例如,过滤,窗口,阈值)或后处理(例如事件合并)的情况下将原始数据(进行重新采样)。这不仅使该模型吸引了实时应用,而且还产生了类似于已知临床标准的可解释的超参数。我们通过动态编程和反向传播来得出算法的精确,可拖动的推断,以作为普遍期望最大化的特殊情况。我们在三个公共数据集上验证了该模型,并提供了支持,更复杂的模型能够在透明,可审计和可推广的同时超越最新的检测器。
We propose a generative model for single-channel EEG that incorporates the constraints experts actively enforce during visual scoring. The framework takes the form of a dynamic Bayesian network with depth in both the latent variables and the observation likelihoods-while the hidden variables control the durations, state transitions, and robustness, the observation architectures parameterize Normal-Gamma distributions. The resulting model allows for time series segmentation into local, reoccurring dynamical regimes by exploiting probabilistic models and deep learning. Unlike typical detectors, our model takes the raw data (up to resampling) without pre-processing (e.g., filtering, windowing, thresholding) or post-processing (e.g., event merging). This not only makes the model appealing to real-time applications, but it also yields interpretable hyperparameters that are analogous to known clinical criteria. We derive algorithms for exact, tractable inference as a special case of Generalized Expectation Maximization via dynamic programming and backpropagation. We validate the model on three public datasets and provide support that more complex models are able to surpass state-of-the-art detectors while being transparent, auditable, and generalizable.