论文标题

通过kang and park的猜想对奥尔德的猜想进行了概括

Generalizations of Alder's Conjecture via a Conjecture of Kang and Park

论文作者

Duncan, Adriana L., Khunger, Simran, Swisher, Holly, Tamura, Ryan

论文摘要

长期以来,整数分区对数字理论家(也许是最著名的Ramanujan)感兴趣,并且与许多数学领域有关,包括组合学,模块化形式,表示理论,分析和数学物理学。在这里,我们专注于具有差距条件和分区的分区,其中零件来自固定残留类别。 令$δ_d^{(a,b)}(n)= q_d^{(a)}(n) - q_d^{(b)}(n)$,其中$ q_d^{(a)}(a)}(a)$计数$ n $的零件数量至少为$ d $ d $ d $和$ a $ a $ a $ a $ a $ a $ n $ n $ n $ n $ n $ n $ n n和q_d(将零件分区$ \ equiv \ pm b \ pmod {d + 3} $。 1956年,奥尔德(Alder)猜想$Δ_d^{(1,1)}(n)\ geq 0 $对于所有正$ n $和$ d $。该猜想是由安德鲁斯(Andrews)在1971年的一部分证明了2008年的Yee,并由Alfes,Jameson和Lemke Oliver在2011年完全解决。Alder的猜想概括了几个众所周知的分区身份,包括Euler的定理,包括$ N $的分区数量,将零件的分区数量等同于奇怪的部分,以及$ n $ n $ n $ n $ n $ n $ n $ n的零件。身份。 在2020年,康和帕克(Kang and Park)构建了Alder的猜想的扩展,这与第二个Rogers-Ramanujan身份有关,考虑$δ_d^{(a,b, - )}(n)= q_d^{(a)}(a)}(a)}(a)}(a)}(n) - q_d^{(b, - - - - - - - - - - - - - n)$将零件分区$ \ equiv \ pm b \ pmod {d + 3} $不包括$ d + 3-b $零件。 Kang and Park猜想$δ_d^{(2,2, - )}(n)\ geq 0 $ for All $ d \ geq 1 $和$ n \ geq 0 $,并证明了这一点,以$ d = 2^r -2 $和$ n $偶尔证明了这一点。 我们证明了Kang和Park的猜想,但几乎有限的$ D $。为了证明其余案例,我们适应了Alfes,Jameson和Lemke Oliver的工作,以为相关功能产生渐近学。最后,我们提出了一个更普遍的猜想,用于更高的$ a = b $,并证明了无限类别的$ n $和$ d $。

Integer partitions have long been of interest to number theorists, perhaps most notably Ramanujan, and are related to many areas of mathematics including combinatorics, modular forms, representation theory, analysis, and mathematical physics. Here, we focus on partitions with gap conditions and partitions with parts coming from fixed residue classes. Let $Δ_d^{(a,b)}(n) = q_d^{(a)}(n) - Q_d^{(b)}(n)$ where $q_d^{(a)}(n)$ counts the number of partitions of $n$ into parts with difference at least $d$ and size at least $a$, and $Q_d^{(b)}(n)$ counts the number of partitions into parts $\equiv \pm b \pmod{d + 3}$. In 1956, Alder conjectured that $Δ_d^{(1,1)}(n) \geq 0$ for all positive $n$ and $d$. This conjecture was proved partially by Andrews in 1971, by Yee in 2008, and was fully resolved by Alfes, Jameson and Lemke Oliver in 2011. Alder's conjecture generalizes several well-known partition identities, including Euler's theorem that the number of partitions of $n$ into odd parts equals the number of partitions of $n$ into distinct parts, as well as the first of the famous Rogers-Ramanujan identities. In 2020, Kang and Park constructed an extension of Alder's conjecture which relates to the second Rogers-Ramanujan identity by considering $Δ_d^{(a,b,-)}(n) = q_d^{(a)}(n) - Q_d^{(b,-)}(n)$ where $Q_d^{(b,-)}(n)$ counts the number of partitions into parts $\equiv \pm b \pmod{d + 3}$ excluding the $d+3-b$ part. Kang and Park conjectured that $Δ_d^{(2,2,-)}(n)\geq 0$ for all $d\geq 1$ and $n\geq 0$, and proved this for $d = 2^r - 2$ and $n$ even. We prove Kang and Park's conjecture for all but finitely many $d$. Toward proving the remaining cases, we adapt work of Alfes, Jameson and Lemke Oliver to generate asymptotics for the related functions. Finally, we present a more generalized conjecture for higher $a=b$ and prove it for infinite classes of $n$ and $d$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源