论文标题

交易:难以意识到语义细分的积极学习

DEAL: Difficulty-aware Active Learning for Semantic Segmentation

论文作者

Xie, Shuai, Feng, Zunlei, Chen, Ying, Sun, Songtao, Ma, Chao, Song, Mingli

论文摘要

主动学习旨在通过找到最有用的样本来解决标记数据的匮乏。但是,当应用于语义细分时,现有方法忽略了不同语义区域的分割难度,这会导致在诸如微小或细长的对象等艰难的语义领域的性能差。为了解决这个问题,我们提出了一个由两个分支组成的语义难度感知的主动学习(交易)网络:共同的分割分支和语义难度分支。对于后一个分支,在分割结果和GT之间的分割误差的监督下,引入了一个像素的概率注意模块,以了解不同语义领域的语义难度分数。最后,设计了两个采集功能,以选择具有语义困难的最有价值的样本。语义细分基准的竞争结果表明,交易可以实现最先进的积极学习绩效,并尤其改善了艰难的语义领域的性能。

Active learning aims to address the paucity of labeled data by finding the most informative samples. However, when applying to semantic segmentation, existing methods ignore the segmentation difficulty of different semantic areas, which leads to poor performance on those hard semantic areas such as tiny or slender objects. To deal with this problem, we propose a semantic Difficulty-awarE Active Learning (DEAL) network composed of two branches: the common segmentation branch and the semantic difficulty branch. For the latter branch, with the supervision of segmentation error between the segmentation result and GT, a pixel-wise probability attention module is introduced to learn the semantic difficulty scores for different semantic areas. Finally, two acquisition functions are devised to select the most valuable samples with semantic difficulty. Competitive results on semantic segmentation benchmarks demonstrate that DEAL achieves state-of-the-art active learning performance and improves the performance of the hard semantic areas in particular.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源