论文标题

多阶高精度沙漏网络的稳健面对对齐

Robust Face Alignment by Multi-order High-precision Hourglass Network

论文作者

Wan, Jun, Lai, Zhihui, Liu, Jun, Zhou, Jie, Gao, Can

论文摘要

热图回归(HR)已成为面部比对的主流方法之一,并在受约束的环境下获得了有希望的结果。但是,当面部图像遭受巨大的姿势变化,沉重的阻塞和复杂的照明时,由于生成的Landmark热图的分辨率低,并且排除了重要的高阶信息,因此HR方法的性能极大地降低了,这些信息可用于学习更多歧视性。为了解决具有极大姿势和沉重阻塞的面孔的对齐问题,本文提出了热图子像素回归(HSR)方法和多阶交叉几何学(MCG)模型,这些模型被无缝集成到新型的多阶高确定性小时网络(MHHN)中。提出了HSR方法,以通过精心设计的子像素检测损失(SDL)和子像素检测技术(SDT)实现高精度地标检测。同时,MCG模型能够使用所提出的多阶交叉信息来学习更多的判别性表示,以增强面部几何约束和上下文信息。据我们所知,这是探索热图子像素回归以进行稳健和高精度对准的第一项研究。挑战性基准数据集的实验结果表明,我们的方法在文献中的表现优于最先进的方法。

Heatmap regression (HR) has become one of the mainstream approaches for face alignment and has obtained promising results under constrained environments. However, when a face image suffers from large pose variations, heavy occlusions and complicated illuminations, the performances of HR methods degrade greatly due to the low resolutions of the generated landmark heatmaps and the exclusion of important high-order information that can be used to learn more discriminative features. To address the alignment problem for faces with extremely large poses and heavy occlusions, this paper proposes a heatmap subpixel regression (HSR) method and a multi-order cross geometry-aware (MCG) model, which are seamlessly integrated into a novel multi-order high-precision hourglass network (MHHN). The HSR method is proposed to achieve high-precision landmark detection by a well-designed subpixel detection loss (SDL) and subpixel detection technology (SDT). At the same time, the MCG model is able to use the proposed multi-order cross information to learn more discriminative representations for enhancing facial geometric constraints and context information. To the best of our knowledge, this is the first study to explore heatmap subpixel regression for robust and high-precision face alignment. The experimental results from challenging benchmark datasets demonstrate that our approach outperforms state-of-the-art methods in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源