论文标题

同时生成决策图和多聚焦图像融合结果的端到端学习

End-to-End Learning for Simultaneously Generating Decision Map and Multi-Focus Image Fusion Result

论文作者

Ma, Boyuan, Yin, Xiang, Wu, Di, Ban, Xiaojuan

论文摘要

多聚焦图像融合的总体目的是收集不同图像的聚焦区域,以生成独特的全焦点融合图像。基于深度学习的方法通过其强大的特征表示能力而成为图像融合的主流。但是,大多数现有的深度学习结构都无法平衡融合质量和端到端实施便利。由于其非线性映射机制,端到端解码器设计通常会导致不切实际的结果。另一方面,生成中间决策图可为融合图像获得更好的质量,但依赖于经验后处理参数选择的纠正。在这项工作中,为了处理输出图像质量和结构实施的全面简单性的要求,我们提出了一个级联网络,以同时生成决策图并通过端到端培训程序融合结果。它避免了推理阶段对经验后处理方法的依赖。为了提高融合质量,我们引入了梯度意识损失功能,以保留输出融合图像中的梯度信息。此外,我们设计了一种决策校准策略,以减少多个图像融合的应用时消耗。进行了广泛的实验,以与具有6个评估指标的19种不同的最先进的多聚焦图像融合结构进行比较。结果证明,我们设计的结构通常可以改善输出融合的图像质量,而对于多个图像融合,实施效率提高了30 \%。

The general aim of multi-focus image fusion is to gather focused regions of different images to generate a unique all-in-focus fused image. Deep learning based methods become the mainstream of image fusion by virtue of its powerful feature representation ability. However, most of the existing deep learning structures failed to balance fusion quality and end-to-end implementation convenience. End-to-end decoder design often leads to unrealistic result because of its non-linear mapping mechanism. On the other hand, generating an intermediate decision map achieves better quality for the fused image, but relies on the rectification with empirical post-processing parameter choices. In this work, to handle the requirements of both output image quality and comprehensive simplicity of structure implementation, we propose a cascade network to simultaneously generate decision map and fused result with an end-to-end training procedure. It avoids the dependence on empirical post-processing methods in the inference stage. To improve the fusion quality, we introduce a gradient aware loss function to preserve gradient information in output fused image. In addition, we design a decision calibration strategy to decrease the time consumption in the application of multiple images fusion. Extensive experiments are conducted to compare with 19 different state-of-the-art multi-focus image fusion structures with 6 assessment metrics. The results prove that our designed structure can generally ameliorate the output fused image quality, while implementation efficiency increases over 30\% for multiple images fusion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源