论文标题

多体定位过渡中关键点的签名

Signatures of a critical point in the many-body localization transition

论文作者

Corps, Ángel L., Molina, Rafael A., Relaño, Armando

论文摘要

经历多体定位过渡的无序相互作用的自旋链的特征是动态混乱且可整合的两种限制行为。但是,它们之间的过渡区域尚未完全理解。我们在这里提出了一个临界点的可能有限尺寸的前体,该前体显示了典型的有限尺寸缩放,并区分了两个不同的动态阶段。在范式无序的$ j_1 $ -j_2 $型号中,在这个单数点,整个一维动量分布的对角线波动的过量最大。对于可访问的系统尺寸,可访问精确的对角度,该最大尺度的位置和大小与系统大小线性线性。此外,我们表明,这个奇异点是在无序的强度和海森堡能量重合的相同的混乱强度上发现的。在这一点下,光谱统计遵循通用随机矩阵行为,直到无能为力。在其上方,没有混乱的行为痕迹,光谱统计量被广义的半波斯尼斯模型很好地描述,最终导致了可综合的泊松行为。因此,我们为多体定位过渡提供了一种综合场景,猜测,如果存在,则应通过这种无序强度的值给出热力学极限中的临界点。

Disordered interacting spin chains that undergo a many-body localization transition are characterized by two limiting behaviors where the dynamics are chaotic and integrable. However, the transition region between them is not fully understood yet. We propose here a possible finite-size precursor of a critical point that shows a typical finite-size scaling and distinguishes between two different dynamical phases. The kurtosis excess of the diagonal fluctuations of the full one-dimensional momentum distribution from its microcanonical average is maximum at this singular point in the paradigmatic disordered $J_1$-$J_2$ model. For system sizes accessible to exact diagonalization, both the position and the size of this maximum scale linearly with the system size. Furthermore, we show that this singular point is found at the same disorder strength at which the Thouless and the Heisenberg energies coincide. Below this point, the spectral statistics follow the universal random matrix behavior up to the Thouless energy. Above it, no traces of chaotic behavior remain, and the spectral statistics are well described by a generalized semi-Poissonian model, eventually leading to the integrable Poissonian behavior. We provide, thus, an integrated scenario for the many-body localization transition, conjecturing that the critical point in the thermodynamic limit, if it exists, should be given by this value of disorder strength.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源