论文标题

通用随机矩阵模型的非单调限制电势和特征值密度转变

Nonmonotonic confining potential and eigenvalue density transition for generalized random matrix model

论文作者

Yadav, Swapnil, Alam, Kazi, Muttalib, K. A., Wang, Dong

论文摘要

我们考虑了一个随机矩阵集合的联合概率分布的几个限制案例,其额外的相互作用项由指数$γ$控制(称为$γ$ imemembles)。有效潜力本质上是与$γ= 1 $(称为Muttalib-Borodin合奏)相同合奏的单粒子限制潜力,是解决与$γ$相关的Riemann-Hilbert问题的关键数量。它使我们能够数值计算所有$γ> 0 $的$γ$增材的特征值密度。我们表明,两粒子相互作用参数$γ$的重要效果是在有效的单粒子电位中产生或增强非单调性。对于最初的单粒子电位的合适选择,减少$γ$的有效潜力可能会导致较大的非单调性,从而导致特征值的密度显着变化。对于无序导体,这对应于疾病增加的导电系统下降。这表明,合适的$γ$份量模型可以用作研究障碍对电导分布的影响的可能框架。

We consider several limiting cases of the joint probability distribution for a random matrix ensemble with an additional interaction term controlled by an exponent $γ$ (called the $γ$-ensembles). The effective potential, which is essentially the single-particle confining potential for an equivalent ensemble with $γ=1$ (called the Muttalib-Borodin ensemble), is a crucial quantity defined in solution to the Riemann-Hilbert problem associated with the $γ$-ensembles. It enables us to numerically compute the eigenvalue density of $γ$-ensembles for all $γ> 0$. We show that one important effect of the two-particle interaction parameter $γ$ is to generate or enhance the non-monotonicity in the effective single-particle potential. For suitable choices of the initial single-particle potentials, reducing $γ$ can lead to a large non-monotonicity in the effective potential, which in turn leads to significant changes in the density of eigenvalues. For a disordered conductor, this corresponds to a systematic decrease in the conductance with increasing disorder. This suggests that appropriate models of $γ$-ensembles can be used as a possible framework to study the effects of disorder on the distribution of conductances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源