论文标题
一类多元多项式卷积(和应用)
A class of multivariate polynomial convolutions (and applications)
论文作者
论文摘要
我们证明了两个用于多元决定性多项式的“主”卷积定理。所使用的方法包括我们所谓的“次要正交”集合的基本属性以及矩阵混合判别的特性。我们还提供了应用程序,包括重新启动Barvinok的结果,以计算低等级矩阵的永久性和对应于单位不变添加的广义奇异值的多项式卷积。
We prove two "master" convolution theorems for multivariate determinantal polynomials. The methods used include basic properties of what we call a "minor-orthogonal" ensemble as well as properties of the mixed discriminant of matrices. We also give applications, including a rederivation of a result of Barvinok on computing the permanent of a low rank matrix and a polynomial convolution corresponding to the unitarily invariant addition of generalized singular values.