论文标题
通过高斯对耦合腔模式的高斯处理,在非线性微孔谐振器中进行反向散射
Backscattering in Nonlinear Microring Resonators Via A Gaussian Treatment of Coupled Cavity Modes
论文作者
论文摘要
耦合腔模式的系统有可能以高度用途的方式提供明亮的量子光学状态。例如,由于CMOS制造技术,其较小的足迹以及将许多这样的微孔耦合在一起的相对便捷性,因此微型谐振器是光子来源的高度可扩展的候选者,但是,波团的表面粗糙度以及耦合器几何形式的缺陷,由于背景和背景而导致的骑兵模态划分。微林中的寄生后传播模式导致模式的杂交,改变了该系统的耦合腔模式系统的线性和非线性特性,并最终限制了可以产生的量子光源的保真度。在本文中,我们基于有效的Hamiltonian和分散输入输出模型,为耦合腔模式系统中高斯非线性过程提供了全面的通用模型。运动方程的产生动力学通过光学模式的符号转换在高斯过程形式主义中评估。然后,我们使用该框架在物理相关的参数方面进行数值模型和探索微孔谐振器中的反向散射问题,涉及各种共振的分裂,我们计算了随之而来的各种宣传光子方案的杂乱和预言效率,我们探索了观察和评估对应关系和评估刺激性和刺激性的刺激。
Systems of coupled cavity modes have the potential to provide bright quantum optical states of light in a highly versatile manner. Microring resonators for instance are highly scalable candidates for photon sources thanks to CMOS fabrication techniques, their small footprint and the relative ease of coupling many such microrings together, however, surface roughness of the wave-guides, and defects in the coupler geometry routinely induce splitting of the cavity modes due to backscattering and backcoupling. The parasitic back-propagating mode in the microring leads to hybridisation of the modes, altering the linear and nonlinear properties of this system of coupled cavity modes, and ultimately constraining the fidelity of quantum light sources that can be produced. In this paper, we derive a comprehensive general model for Gaussian nonlinear processes in systems of coupled cavity modes, based on an effective field Hamiltonian and a dispersive input-output model. The resulting dynamics of the equations of motion are evaluated in a Gaussian process formalism via the symplectic transformations on the optical modes. We then use this framework to numerically model and explore the problem of backscattering in microring resonators in physically relevant parameter regimes, involving the splitting of various resonances, we calculate the consequent impurity and heralding efficiency of various heralded photon schemes, we explore a perturbative explanation of the observations and assess the correspondence between spontaneous and stimulated processes in these systems.