论文标题
核心次级延伸和泊松浸没
Coregular submanifolds and Poisson submersions
论文作者
论文摘要
我们分析\ emph {浸入泊松纤维}。这些是淹没的淹没,其总空间带有泊松结构,环境泊松结构以狄拉克结构向后撤回到每个纤维上的泊松结构。我们的``Poisson-dirac观点''是由泊松浸入泊松纤维的自然例子(在感谢您使用泊松的几何形状和泊松群中)提示的 - 使用泊松文献中的现有工具,他们的分析是不可能的。 本文的第一部分研究了泊松 - 迪拉克在submanifolds上诱导泊松结构的观点。这是一个丰富的景观,其中微妙的行为比比皆是 - 正如我们在这里发现的诱导与环境符号成成叶叶之间复杂关系的令人惊讶的``跳跃现象''所说明的。但是,这些病理不存在\ emph {coregular} submanifolds的良好且丰富的类别,我们在这里大多与之关注。 论文研究的第二部分用泊松纤维 - 扁平合成束的自然泊松泛化。这些泊松淹没具有核心泊松二元纤维,并且相对于此类submanifolds的作用。我们讨论了这种泊松纤维的泊松纤维的微妙集体行为,并解释了它们与泊松结构铅笔的关系。 第三部分也是最后一部分将这种理论应用于带有谎言理论的泊松纤维的泊松淹没。我们还表明,这种浸入是相关捆绑结构的方便环境,我们通过生产具有有限数量符号叶子的新泊松结构来说明这一点。 本文中的某些要点是相当新的,我们说明了许多有很多(反)例子出现的好问题。
We analyze \emph{submersions with Poisson fibres}. These are submersions whose total space carries a Poisson structure, on which the ambient Poisson structure pulls back, as a Dirac structure, to Poisson structures on each individual fibre. Our ``Poisson-Dirac viewpoint'' is prompted by natural examples of Poisson submersions with Poisson fibers -- in toric geometry and Poisson-Lie groups -- whose analysis was not possible using the existing tools in the Poisson literature. The first part of the paper studies the Poisson-Dirac perspective of inducing Poisson structures on submanifolds. This is a rich landscape, in which subtle behaviours abound -- as illustrated by a surprising ``jumping phenomenon'' concerning the complex relation between the induced and the ambient symplectic foliations, which we discovered here. These pathologies, however, are absent from the well-behaved and abundant class of \emph{coregular} submanifolds, with which we are mostly concerned here. The second part of the paper studies Poisson submersions with Poisson fibres -- the natural Poisson generalization of flat symplectic bundles. These Poisson submersions have coregular Poisson-Dirac fibres, and behave functorially with respect to such submanifolds. We discuss the subtle collective behavior of the Poisson fibers of such Poisson fibrations, and explain their relation to pencils of Poisson structures. The third and final part applies the theory developed to Poisson submersions with Poisson fibres which arise in Lie theory. We also show that such submersions are a convenient setting for the associated bundle construction, and we illustrate this by producing new Poisson structures with a finite number of symplectic leaves. Some of the points in the paper being fairly new, we illustrate the many fine issues that appear with an abundance of (counter-)examples.