论文标题

基于空间图的杂交传染病模型,并应用于Covid-19

A Spatial-Temporal Graph Based Hybrid Infectious Disease Model with Application to COVID-19

论文作者

Zheng, Yunling, Li, Zhijian, Xin, Jack, Zhou, Guofa

论文摘要

随着Covid-19的大流行的发展,可靠的预测在政策制定中起着重要作用。经典的传染病模型SEIR(易感性侵袭性恢复)是一个紧凑而简单的时间模型。在有限的时间序列数据(例如COVID-19)中,数据驱动的机器学习模型(例如RNN)可能会受到影响。在本文中,我们将SEIR和RNN结合在图形结构上,以开发混合时空模型,以达到训练和预测的准确性和效率。我们在图形结构上介绍了两个功能:节点特征(局部时间感染趋势)和边缘特征(地理邻居效应)。对于节点特征,我们从SEIR中得出一个离散的递归(称为I-方程式),因此梯度下降方法很容易适用于其优化。对于Edge功能,我们设计了一个RNN模型来捕获相邻效果并将损失功能的景观正规化,以便局部最小值有效且可靠地预测。所得的混合模型(称为IERNN)提高了美国国家级别COVID的预测准确性,来自美国的新案例数据,超过1天和7天的预测,超过了表现的标准时间模型(RNN,SEIR和ARIMA)。我们的模型可容纳各种程度的重新开放,并为决策者提供潜在的结果。

As the COVID-19 pandemic evolves, reliable prediction plays an important role for policy making. The classical infectious disease model SEIR (susceptible-exposed-infectious-recovered) is a compact yet simplistic temporal model. The data-driven machine learning models such as RNN (recurrent neural networks) can suffer in case of limited time series data such as COVID-19. In this paper, we combine SEIR and RNN on a graph structure to develop a hybrid spatio-temporal model to achieve both accuracy and efficiency in training and forecasting. We introduce two features on the graph structure: node feature (local temporal infection trend) and edge feature (geographic neighbor effect). For node feature, we derive a discrete recursion (called I-equation) from SEIR so that gradient descend method applies readily to its optimization. For edge feature, we design an RNN model to capture the neighboring effect and regularize the landscape of loss function so that local minima are effective and robust for prediction. The resulting hybrid model (called IeRNN) improves the prediction accuracy on state-level COVID-19 new case data from the US, out-performing standard temporal models (RNN, SEIR, and ARIMA) in 1-day and 7-day ahead forecasting. Our model accommodates various degrees of reopening and provides potential outcomes for policymakers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源