论文标题

在部分可观察性下进行加速机器人学习的信念接地网络

Belief-Grounded Networks for Accelerated Robot Learning under Partial Observability

论文作者

Nguyen, Hai, Daley, Brett, Song, Xinchao, Amato, Christopher, Platt, Robert

论文摘要

从单个视觉或力量反馈测量不足以重建状态的意义上说,许多重要的机器人问题是可以观察到的。标准方法涉及学习有关信念或观察行动历史的政策。但是,这两个都有缺点。在线跟踪信念是昂贵的,很难直接学习有关历史的政策。我们提出了一种在部分可观察性下进行政策学习的方法,称为信仰接地网络(BGN),其中辅助信仰重建损失激发了神经网络,以简单地总结其输入历史。由于结果策略是历史记录的函数,而不是信念,因此可以在运行时轻松执行。我们将BGN与经典基准任务以及三个新型的机器人接触式任务进行比较。当转移到物理机器人上时,BGN的表现优于所有其他测试的方法及其所学习的政策效果很好。

Many important robotics problems are partially observable in the sense that a single visual or force-feedback measurement is insufficient to reconstruct the state. Standard approaches involve learning a policy over beliefs or observation-action histories. However, both of these have drawbacks; it is expensive to track the belief online, and it is hard to learn policies directly over histories. We propose a method for policy learning under partial observability called the Belief-Grounded Network (BGN) in which an auxiliary belief-reconstruction loss incentivizes a neural network to concisely summarize its input history. Since the resulting policy is a function of the history rather than the belief, it can be executed easily at runtime. We compare BGN against several baselines on classic benchmark tasks as well as three novel robotic touch-sensing tasks. BGN outperforms all other tested methods and its learned policies work well when transferred onto a physical robot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源