论文标题

手性诱导的非磁性元尿液中的磁性发电

Chirality-Induced Electrical Generation of Magnetism in Nonmagnetic Elemental Tellurium

论文作者

Furukawa, Tetsuya, Watanabe, Yuta, Ogasawara, Naoki, Kobayashi, Kaya, Itou, Tetsuaki

论文摘要

手性质的结构缺乏反转,镜像和旋转对称性。因此,给定的手性材料具有右手或左手的结构。在手性质上,电力和磁性可以以外的方式以外的方式耦合(例如手性磁铁中的磁性手性效应)。在本文中,我们给出了稳固的实验证明,证明了散装非磁性手性元素元素的线性电流诱导的磁化效应。我们测量了$^{125} $ te核磁共振(NMR)光谱移动,在三角矫治单晶体的脉冲电流下。我们提供一般的对称考虑因素,以讨论电场(电场和电流)诱导的磁化,并阐明在三角矫尿中观察到的NMR偏移是由线性电流诱导的磁化效应引起的,而不是由高阶磁电磁性效应引起的。我们还表明,电流诱导的NMR移位是通过矫流晶体结构的手性逆转来逆转的。该结果是晶体性质诱导的自旋极化的第一个直接证据,这是手性有机分子中手性诱导的自旋选择性的无机 - 纤维结晶类似物。目前的发现还表明,非磁性手性晶体可以应用于Spintronics和无线圈设备,以在经典电磁剂之外产生磁化。

Chiral matter has a structure that lacks inversion, mirror, and rotoreflection symmetry; thus, a given chiral material has either a right- or left-handed structure. In chiral matter, electricity and magnetism can be coupled in an exotic manner beyond the classical electromagnetism (e.g., magneto chiral effect in chiral magnets). In this paper, we give a firm experimental proof of the linear electric-current-induced magnetization effect in bulk nonmagnetic chiral matter elemental trigonal tellurium. We measured a $^{125} $Te nuclear magnetic resonance (NMR) spectral shift under a pulsed electric current for trigonal tellurium single crystals. We provide general symmetry considerations to discuss the electrically (electric-field- and electric-current-) induced magnetization and clarify that the NMR shift observed in trigonal tellurium is caused by the linear current-induced magnetization effect, not by a higher-order magnetoelectric effect. We also show that the current-induced NMR shift is reversed by a chirality reversal of the tellurium crystal structure. This result is the first direct evidence of crystal-chirality-induced spin polarization, which is an inorganic-bulk-crystal analogue of the chirality-induced spin selectivity in chiral organic molecules. The present findings also show that nonmagnetic chiral crystals may be applied to spintronics and coil-free devices to generate magnetization beyond the classical electromagnetism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源