论文标题
自旋旋转模型和捕获到双同步共振中
The spin-spin model and the capture into the double synchronous resonance
论文作者
论文摘要
本文的目的是提出一个模型,该模型是整个两体问题的平面版本,并讨论相关周期解决方案的存在和稳定性。考虑两个在固定的Coplanar开普勒轨道上相互绕行的均匀椭圆形。此外,假定它们各自的旋转轴垂直于轨道平面,这也是一个常见的赤道平面。自旋旋转模型涉及两个椭圆形的旋转动力学。对于非零的轨道偏心率,它具有非自治轴束系统的结构。该模型是两个扩展物体的经典自旋轨道问题的自然扩展。此外,我们考虑耗散潮汐扭矩,这可能会触发系统捕获到自旋轨道和自旋旋转共振中。在本文中,我们为保守模型和耗散模型提供了一些理论上的结果。保守的模型具有哈密顿的结构。我们使用哈密顿系统的属性在模型参数的空间中提供一些足够的条件,以确保奇数周期性解决方案的存在,独特性和线性稳定性。该解决方案代表了保守性方案中的双重同步共振。这种解决方案可以继续到耗散性,在该方案中渐近稳定。我们将渐近稳定性视为捕获双同步共振的动力学机制。最终,我们将结果应用于包括冥王星二元系统和露西任务的目标的pluto-Charon二元系统和特洛伊木马二元小行星617 Patroclus。
The aim of this article is to propose a model, that is a planar version of the Full Two-Body Problem, and discuss the existence and stability of a relevant periodic solution. Consider two homogeneous ellipsoids orbiting around each other in fixed coplanar Keplerian orbits. Moreover, their respective spin axes are assumed to be perpendicular to the orbital plane, that is also a common equatorial plane. The spin-spin model deals with the coupled rotational dynamics of both ellipsoids. For a non-zero orbital eccentricity, it has the structure of a non-autonomous system of coupled pendula. This model is a natural extension of the classical spin-orbit problem for two extended bodies. In addition, we consider dissipative tidal torques, that can trigger the capture of the system into spin-orbit and spin-spin resonances. In this paper we give some theoretical results for both the conservative model and the dissipative one. The conservative model has a Hamiltonian structure. We use properties of Hamiltonian systems to give some sufficient conditions in the space of parameters of the model, that guarantee existence, uniqueness and linear stability of an odd periodic solution. This solution represents a double synchronous resonance in the conservative regime. Such solution can be continued to the dissipative regime, where it becomes asymptotically stable. We see asymptotic stability as a dynamical mechanism for the capture into the double synchronous resonance. Finally we apply our results to several cases including the Pluto-Charon binary system and the Trojan binary asteroid 617 Patroclus, target of the LUCY mission.