论文标题
概率的小数据全球能量麦克斯韦 - 克莱因 - 凯琳方程
Probabilistic small data global well-posedness of the energy-critical Maxwell-Klein-Gordon equation
论文作者
论文摘要
我们建立了概率的小数据,相对于库仑量规的能量临界麦克斯韦 - 克莱因 - 盖孔方程的全局良好,用于扩展超临界随机初始数据。证明依赖于频率过程的诱导和通过精致的“概率”参数结构提供的修改线性非线性分解。这是在缩放超临界规律性下随机初始数据的几何波动方程的第一个全局存在结果。
We establish probabilistic small data global well-posedness of the energy-critical Maxwell-Klein-Gordon equation relative to the Coulomb gauge for scaling super-critical random initial data. The proof relies on an induction on frequency procedure and a modified linear-nonlinear decomposition furnished by a delicate "probabilistic" parametrix construction. This is the first global existence result for a geometric wave equation for random initial data at scaling super-critical regularity.