论文标题

无监督领域适应的教师培训竞赛

Teacher-Student Competition for Unsupervised Domain Adaptation

论文作者

Xiao, Ruixin, Liu, Zhilei, Wu, Baoyuan

论文摘要

仅在源级别的源域的监督下,现有的无监督域适应(UDA)方法主要从共享的特征提取器中学习域 - 不变表示,这会导致源偏置问题。本文提出了一种无监督的域适应方法,即教师竞争(TSC)。特别是,引入了学生网络以学习针对目标特定的特征空间,我们设计了一种新颖的竞争机制,以选择更可靠的伪标签来培训学生网络。我们介绍了一个具有现有常规UDA方法的结构的教师网络,教师和学生网络都竞争提供目标伪标记,以限制每个目标样本在学生网络中的培训。广泛的实验表明,我们提出的TSC框架显着优于Office-31和ImageClef-DA基准的最新域适应方法。

With the supervision from source domain only in class-level, existing unsupervised domain adaptation (UDA) methods mainly learn the domain-invariant representations from a shared feature extractor, which causes the source-bias problem. This paper proposes an unsupervised domain adaptation approach with Teacher-Student Competition (TSC). In particular, a student network is introduced to learn the target-specific feature space, and we design a novel competition mechanism to select more credible pseudo-labels for the training of student network. We introduce a teacher network with the structure of existing conventional UDA method, and both teacher and student networks compete to provide target pseudo-labels to constrain every target sample's training in student network. Extensive experiments demonstrate that our proposed TSC framework significantly outperforms the state-of-the-art domain adaptation methods on Office-31 and ImageCLEF-DA benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源