论文标题
热jupiter大气流解决方案的数值收敛
Numerical Convergence of Hot-Jupiter Atmospheric Flow Solutions
论文作者
论文摘要
我们对使用在极性行星外行星研究中常用的设置进行的模拟中进行了一项数值收敛的广泛研究,用于在高海拔高度时在短时间内的短时间尺度上的静止状态。严格评估收敛性:(i)高度准确的伪模型模型,该模型已被明确验证,可在热jupiter流动条件下表现良好,并且(ii)比较动能光谱,瞬时(毫无用处)的涡度涡流和涡流的时间进化,均与模拟量相等。在模拟中,(水平和垂直)分辨率,耗散操作员订单和粘度系数随物理和初始设置相同而变化。将所有模拟与高水平分辨率和耗散顺序(分别为t682和$ \ nabla^{16} $)以及相互对立的基准模拟进行比较。从广义上讲,参考溶液具有动态的,区域(东西方)不对称的射流,并具有大量的小规模涡流和重力波。在这里,我们表明,模拟仅在T341分辨率和$ \ nabla^{16} $耗散订单时收敛到参考模拟。在此分辨率和顺序之下,模拟不会收敛或收敛到非物理解决方案。一般的收敛行为独立于$ \ sim \! 2 \!\ times \! 10^{ - 3} $ mpa to $ \ sim \! 2 \!\ times \! 10^1 $ mpa。讨论了当前极性行星大气建模和观察结果的影响。
We perform an extensive study of numerical convergence for hot-Jupiter atmospheric flow solutions in simulations employing a setup commonly-used in extrasolar planet studies, a resting state thermally forced to a prescribed temperature distribution on a short time-scale at high altitudes. Convergence is assessed rigorously with: (i) a highly-accurate pseudospectral model which has been explicitly verified to perform well under hot-Jupiter flow conditions and (ii) comparisons of the kinetic energy spectra, instantaneous (unaveraged) vorticity fields and temporal evolutions of the vorticity field from simulations which are numerically equatable. In the simulations, the (horizontal and vertical) resolutions, dissipation operator order and viscosity coefficient are varied with identical physical and initial setups. All of the simulations are compared against a fiducial, reference simulation at high horizontal resolution and dissipation order (T682 and $\nabla^{16}$, respectively) -- as well as against each other. Broadly, the reference solution features a dynamic, zonally (east-west) asymmetric jet with a copious amount of small-scale vortices and gravity waves. Here we show that simulations converge to the reference simulation only at T341 resolution and with $\nabla^{16}$ dissipation order. Below this resolution and order, simulations either do not converge or converge to unphysical solutions. The general convergence behaviour is independent of the vertical range of the atmosphere modelled, from $\sim\! 2\!\times\! 10^{-3}$ MPa to $\sim\! 2\!\times\! 10^1$ MPa. Ramifications for current extrasolar planet atmosphere modelling and observations are discussed.