论文标题

智能:可伸缩的多力强化学习学习培训学校,用于自动驾驶

SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving

论文作者

Zhou, Ming, Luo, Jun, Villella, Julian, Yang, Yaodong, Rusu, David, Miao, Jiayu, Zhang, Weinan, Alban, Montgomery, Fadakar, Iman, Chen, Zheng, Huang, Aurora Chongxi, Wen, Ying, Hassanzadeh, Kimia, Graves, Daniel, Chen, Dong, Zhu, Zhengbang, Nguyen, Nhat, Elsayed, Mohamed, Shao, Kun, Ahilan, Sanjeevan, Zhang, Baokuan, Wu, Jiannan, Fu, Zhengang, Rezaee, Kasra, Yadmellat, Peyman, Rohani, Mohsen, Nieves, Nicolas Perez, Ni, Yihan, Banijamali, Seyedershad, Rivers, Alexander Cowen, Tian, Zheng, Palenicek, Daniel, Ammar, Haitham bou, Zhang, Hongbo, Liu, Wulong, Hao, Jianye, Wang, Jun

论文摘要

多代理互动是现实世界中自动驾驶的基本方面。尽管经过十多年的研究和发展,但如何在各种情况下与不同的道路使用者竞争的问题在很大程度上尚未得到解决。学习方法可以为解决这个问题提供很多东西。但是他们需要一个现实的多代理模拟器,该模拟器会产生多样化且有能力的驾驶互动。为了满足这种需求,我们开发了一个专用的仿真平台,称为Smarts(可扩展的多代理RL培训学校)。 Smarts支持道路使用者的各种行为模型的培训,积累和使用。这些反过来又用于创造越来越现实和多样化的相互作用,从而可以对多代理互动进行更深入,更广泛的研究。在本文中,我们描述了智能的设计目标,解释其基本体系结构及其主要特征,并通过在交互式场景上进行混凝土多代理实验来说明其使用。我们开源Smarts平台以及相关的基准任务和评估指标,以鼓励和授权对自动驾驶的多机构学习研究。我们的代码可在https://github.com/huawei-noah/smarts上找到。

Multi-agent interaction is a fundamental aspect of autonomous driving in the real world. Despite more than a decade of research and development, the problem of how to competently interact with diverse road users in diverse scenarios remains largely unsolved. Learning methods have much to offer towards solving this problem. But they require a realistic multi-agent simulator that generates diverse and competent driving interactions. To meet this need, we develop a dedicated simulation platform called SMARTS (Scalable Multi-Agent RL Training School). SMARTS supports the training, accumulation, and use of diverse behavior models of road users. These are in turn used to create increasingly more realistic and diverse interactions that enable deeper and broader research on multi-agent interaction. In this paper, we describe the design goals of SMARTS, explain its basic architecture and its key features, and illustrate its use through concrete multi-agent experiments on interactive scenarios. We open-source the SMARTS platform and the associated benchmark tasks and evaluation metrics to encourage and empower research on multi-agent learning for autonomous driving. Our code is available at https://github.com/huawei-noah/SMARTS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源