论文标题
KL损失的度量空间中的非参数二元回归
Non-parametric Binary regression in metric spaces with KL loss
论文作者
论文摘要
我们提出了一种非参数二元回归变体,其中假设正规化为LIPSCHITZ函数,将度量空间带到[0,1],并且损失是对数。此设置提出了新颖的计算和统计挑战。在计算方面,我们基于内部方法得出了一种新型的有效优化算法。一个有吸引力的功能是它是无参数的(即,不需要调整更新步长)。在统计方面,基于覆盖数和Rademacher技术的经典概括边界的无限损失函数为经典的概括边界带来了问题。我们通过一种自适应截断方法来应对这一挑战,还提出了一个下限,表明截断在某种意义上是必要的。
We propose a non-parametric variant of binary regression, where the hypothesis is regularized to be a Lipschitz function taking a metric space to [0,1] and the loss is logarithmic. This setting presents novel computational and statistical challenges. On the computational front, we derive a novel efficient optimization algorithm based on interior point methods; an attractive feature is that it is parameter-free (i.e., does not require tuning an update step size). On the statistical front, the unbounded loss function presents a problem for classic generalization bounds, based on covering-number and Rademacher techniques. We get around this challenge via an adaptive truncation approach, and also present a lower bound indicating that the truncation is, in some sense, necessary.