论文标题
多视图聚类用于使用功能连接矩阵识别主题群集和大脑子网络,而无需矢量化
Multiple-view clustering for identifying subject clusters and brain sub-networks using functional connectivity matrices without vectorization
论文作者
论文摘要
在神经科学中,功能性磁共振成像(fMRI)是非侵入性访问大脑活动的重要工具。使用fMRI,可以推断出大脑区域之间的功能连通性(FC),这导致了大脑基本特性的许多发现。作为FC的重要临床应用,基于FC的受试者的聚类最近引起了很多关注,这可能会揭示出在诸如精神疾病亚型等受试者中的重要异质性。特别是,多视图聚类方法是一种强大的分析工具,它根据特定大脑领域的FC确定受试者的聚类模式。但是,当人们将现有的多视图聚类方法应用于fMRI数据时,需要简化数据结构,独立处理FC矩阵中的元素,即矢量化相关矩阵。这样的简化可能会扭曲聚类结果。为了克服这个问题,我们提出了一种基于Wishart混合模型的新型多视图聚类方法,该方法保留了相关矩阵结构而无需矢量化。该方法的独特性是,受试者的多视图聚类基于以数据驱动方式进行优化的节点(或感兴趣的区域,ROIS)的特定网络。因此,它可以识别主体群集解决方案和ROI子网络之间的多个基础关联对。该方法的关键假设是子网络之间的独立性,这可以通过美白相关矩阵有效地解决。我们将提出的方法应用于合成和fMRI数据,证明了所提出的方法的实用性和功能。
In neuroscience, the functional magnetic resonance imaging (fMRI) is a vital tool to non-invasively access brain activity. Using fMRI, the functional connectivity (FC) between brain regions can be inferred, which has contributed to a number of findings of the fundamental properties of the brain. As an important clinical application of FC, clustering of subjects based on FC recently draws much attention, which can potentially reveal important heterogeneity in subjects such as subtypes of psychiatric disorders. In particular, a multiple-view clustering method is a powerful analytical tool, which identifies clustering patterns of subjects depending on their FC in specific brain areas. However, when one applies an existing multiple-view clustering method to fMRI data, there is a need to simplify the data structure, independently dealing with elements in a FC matrix, i.e., vectorizing a correlation matrix. Such a simplification may distort the clustering results. To overcome this problem, we propose a novel multiple-view clustering method based on Wishart mixture models, which preserves the correlation matrix structure without vectorization. The uniqueness of this method is that the multiple-view clustering of subjects is based on particular networks of nodes (or regions of interest, ROIs), optimized in a data-driven manner. Hence, it can identify multiple underlying pairs of associations between a subject cluster solution and a ROI sub-network. The key assumption of the method is independence among sub-networks, which is effectively addressed by whitening correlation matrices. We applied the proposed method to synthetic and fMRI data, demonstrating the usefulness and power of the proposed method.