论文标题

一个元推断框架,将多个外部模型集成到当前研究中

A meta-inference framework to integrate multiple external models into a current study

论文作者

Gu, Tian, Taylor, Jeremy M. G., Mukherjee, Bhramar

论文摘要

研究人员考虑将大型研究中的外部信息纳入以提高统计推断的准确性,而不是依靠内部收集的适度数据集,从而变得越来越普遍。只有在内部可用的一些新预测因素,我们旨在基于“内部”研究的个体数据来构建改进的回归模型,同时将“外部”模型的摘要级信息结合在一起。我们提出了一个荟萃分析框架以及两个加权估计量作为经验贝叶斯估计量的综合,该估计量结合了不同外部模型的估计值。所提出的框架具有灵活性和健壮的方式,即(i)它能够合并使用略有不同的协变量集的外部模型; (ii)它可以识别最相关的外部信息,并减少与内部数据不兼容的信息的影响; (iii)它可以很好地平衡偏见变化权衡,同时保留最大的效率增长。所提出的估计器比对外部估计器的内部数据和其他天真组合的天真分析更有效。

It is becoming increasingly common for researchers to consider incorporating external information from large studies to improve the accuracy of statistical inference instead of relying on a modestly sized dataset collected internally. With some new predictors only available internally, we aim to build improved regression models based on individual-level data from an "internal" study while incorporating summary-level information from "external" models. We propose a meta-analysis framework along with two weighted estimators as the composite of empirical Bayes estimators, which combines the estimates from the different external models. The proposed framework is flexible and robust in the ways that (i) it is capable of incorporating external models that use a slightly different set of covariates; (ii) it can identify the most relevant external information and diminish the influence of information that is less compatible with the internal data; and (iii) it nicely balances the bias-variance trade-off while preserving the most efficiency gain. The proposed estimators are more efficient than the naive analysis of the internal data and other naive combinations of external estimators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源