论文标题

在计算$ \ mathrm {gsp}(4)$的cuspidal汽车表示

On counting cuspidal automorphic representations for $\mathrm{GSp}(4)$

论文作者

Roy, Manami, Schmidt, Ralf, Yi, Shaoyun

论文摘要

我们找到$ \ Mathrm {gsp}(4,\ Mathbb {a} _ {\ Mathbb {q}})$的数字$ s_k(p,ω)$ $ \ mathrm {gsp}(gsp}(4,\ mathbb {a} _ {\ mathbb {a} _ { $ p $的组件是类型$ω$的iWahori-Spherical表示形式,否则不受影响。使用自动型Plancherel密度定理,我们展示了$ s_k(p,ω)$的公式的限制版本如何推广到矢量值情况下,以及有限数量的分支位置。

We find the number $s_k(p,Ω)$ of cuspidal automorphic representations of $\mathrm{GSp}(4,\mathbb{A}_{\mathbb{Q}})$ with trivial central character such that the archimedean component is a holomorphic discrete series representation of weight $k\ge 3$, and the non-archimedean component at $p$ is an Iwahori-spherical representation of type $Ω$ and unramified otherwise. Using the automorphic Plancherel density theorem, we show how a limit version of our formula for $s_k(p,Ω)$ generalizes to the vector-valued case and a finite number of ramified places.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源