论文标题

图形整流罩卷积网络用于异常检测

Graph Fairing Convolutional Networks for Anomaly Detection

论文作者

Mesgaran, Mahsa, Hamza, A. Ben

论文摘要

图形卷积是用于图形结构数据的许多深神经网络的基本构建块。在本文中,我们引入了一个简单但非常有效的图形卷积网络,其跳过连接用于半监督异常检测。在理论上,我们模型中提出的图层传播规则是由在几何处理中隐含整流罩的概念的动机上进行的,并包括一个图形卷积模块,用于汇总来自直接节点邻居的信息和用于结合图层邻里邻里表示形式的跳过连接模块。该传播规则是从雅各比方法的隐式平流方程的迭代解中得出的。除了通过网络层之间的跳过连接从遥远的图节点捕获信息外,我们的方法还利用了用于学习区分节点表示的图形结构和节点特征。这些跳过连接是由我们提出的网络体系结构中的设计集成的。通过在五个基准数据集上进行广泛的实验来证明我们的模型的有效性,从而实现了与强基线方法的更好或可比的异常检测结果。我们还通过消融研究表明,跳过连接有助于改善模型性能。

Graph convolution is a fundamental building block for many deep neural networks on graph-structured data. In this paper, we introduce a simple, yet very effective graph convolutional network with skip connections for semi-supervised anomaly detection. The proposed layerwise propagation rule of our model is theoretically motivated by the concept of implicit fairing in geometry processing, and comprises a graph convolution module for aggregating information from immediate node neighbors and a skip connection module for combining layer-wise neighborhood representations. This propagation rule is derived from the iterative solution of the implicit fairing equation via the Jacobi method. In addition to capturing information from distant graph nodes through skip connections between the network's layers, our approach exploits both the graph structure and node features for learning discriminative node representations. These skip connections are integrated by design in our proposed network architecture. The effectiveness of our model is demonstrated through extensive experiments on five benchmark datasets, achieving better or comparable anomaly detection results against strong baseline methods. We also demonstrate through an ablation study that skip connection helps improve the model performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源