论文标题
硅中的纠缠三旋状状态的量子断层扫描
Quantum tomography of an entangled three-spin state in silicon
论文作者
论文摘要
量子纠缠是相干量子状态的基本特性,也是量子计算的重要资源。尽管已经证明了在硅中的旋转两倍的纠缠,但由于难以控制多Qubit阵列,例如设备障碍,磁性和电气噪声和严格的交换控制,因此创建了多方纠缠的创建,这是实施量子误差校正的第一步。在这里,我们显示了硅中功能齐全的三量阵列的操作以及三Q Qubit的Greenberger-Horne-Horne-Zeilinger(GHz)状态的生成。我们通过量子状态层析成像获得了88.0%的国家保真度,该量子层析成像目睹了真正的GHz级量子纠缠,而这是不可分配的。我们的结果显示了基于硅的量子平台对多Qualbit量子算法的演示的潜力。
Quantum entanglement is a fundamental property of coherent quantum states and an essential resource for quantum computing. While two-qubit entanglement has been demonstrated for spins in silicon, creation of multipartite entanglement, a first step toward implementing quantum error correction, has remained challenging due to the difficulties in controlling a multi-qubit array, such as device disorder, magnetic and electrical noises and exacting exchange controls. Here, we show operation of a fully functional three-qubit array in silicon and generation of a three-qubit Greenberger-Horne-Zeilinger (GHZ) state. We obtain a state fidelity of 88.0 percent by quantum state tomography, which witnesses a genuine GHZ-class quantum entanglement that is not biseparable. Our result shows the potential of silicon-based qubit platform for demonstrations of multiqubit quantum algorithms.