论文标题
单位圆上多项式正交的明确示例,其密集点光谱由几何分布产生
An explicit example of polynomials orthogonal on the unit circle with a dense point spectrum generated by a geometric distribution
论文作者
论文摘要
我们在单位圆上具有密集的点谱系上的一个新的多项式正交家族。该家族用类型$ {_ 2} ϕ_1 $的Q-HYPERGETRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTRICTION函数表示。正交性度量是包裹的几何分布。提出了上述多项式的一些“经典”特性。
We present a new explicit family of polynomials orthogonal on the unit circle with a dense point spectrum. This family is expressed in terms of q-hypergeometric function of type ${_2}ϕ_1$. The orthogonality measure is the wrapped geometric distribution. Some "classical" properties of the above polynomials are presented.