论文标题
Vargrad:变异推理的低变异梯度估计器
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
论文作者
论文摘要
我们基于带有一对输出控制变量的得分函数方法,分析了ELBO的无偏梯度估计器的特性。我们表明,可以使用新的损失来获得此梯度估计器,该新损失定义为确切的后验和变分近似之间的对数比率的方差,我们称之为$ \ textit {log-variance损失} $。在某些条件下,对数变化损失的梯度等于(负)ELBO的梯度。从理论上讲,我们表明该梯度估计器(我们称之为$ \ textIt {vargrad} $,由于其与对数差异损失的联系,在某些设置中的分数函数方法的差异较低,并且剩下的一个输出控制变量系数接近最佳。我们从经验上证明,与离散VAE的其他最先进的估计器相比,Vargrad提供了有利的差异与计算权衡。
We analyse the properties of an unbiased gradient estimator of the ELBO for variational inference, based on the score function method with leave-one-out control variates. We show that this gradient estimator can be obtained using a new loss, defined as the variance of the log-ratio between the exact posterior and the variational approximation, which we call the $\textit{log-variance loss}$. Under certain conditions, the gradient of the log-variance loss equals the gradient of the (negative) ELBO. We show theoretically that this gradient estimator, which we call $\textit{VarGrad}$ due to its connection to the log-variance loss, exhibits lower variance than the score function method in certain settings, and that the leave-one-out control variate coefficients are close to the optimal ones. We empirically demonstrate that VarGrad offers a favourable variance versus computation trade-off compared to other state-of-the-art estimators on a discrete VAE.