论文标题
用于数据交换的雨伞匡威:应用于缓存,计算和改组
An Umbrella Converse for Data Exchange: Applied to Caching, Computing, and Shuffling
论文作者
论文摘要
具有存储和通信功能的多个节点之间的数据交换问题模型模型的几个当前的多用户通信问题,例如编码缓存,数据改组,编码计算等。此类问题的目标是设计通信方案,这些方案可以完成以最佳(最小值(最小))的通信负载来完成所需的数据交换。在这项工作中,我们与这样的一般数据交换问题进行了交谈。匡威的表达仅取决于要在不同节点的不同子集之间移动的位数,并且对问题中的参数没有进一步的具体内容。特定的问题公式,例如编码缓存,编码数据改组,编码的分布式计算的公式,可以看作是此通用数据交换问题的实例。应用我们的通用匡威,我们能够有效地恢复这些公式中已知的重要对话。此外,对于带有或没有中央服务器的客户端具有异质缓存大小的通用编码缓存问题,我们获得了新的一般匡威,该匡威构成了一些现有结果。最后,我们将界限的“集中”版本与索引编码中的已知的广义独立数字相关联,并在这种情况下讨论了我们的边界的紧密性。
The problem of data exchange between multiple nodes with storage and communication capabilities models several current multi-user communication problems like Coded Caching, Data Shuffling, Coded Computing, etc. The goal in such problems is to design communication schemes which accomplish the desired data exchange between the nodes with the optimal (minimum) amount of communication load. In this work, we present a converse to such a general data exchange problem. The expression of the converse depends only on the number of bits to be moved between different subsets of nodes, and does not assume anything further specific about the parameters in the problem. Specific problem formulations, such as those in Coded Caching, Coded Data Shuffling, Coded Distributed Computing, can be seen as instances of this generic data exchange problem. Applying our generic converse, we are able to efficiently recover known important converses in these formulations. Further, for a generic coded caching problem with heterogeneous cache sizes at the clients with or without a central server, we obtain a new general converse, which subsumes some existing results. Finally we relate a `centralized' version of our bound to the known generalized independence number bound in index coding, and discuss our bound's tightness in this context.