论文标题

混合信号的极地反卷积

Polar Deconvolution of Mixed Signals

论文作者

Fan, Zhenan, Jeong, Halyun, Joshi, Babhru, Friedlander, Michael P.

论文摘要

信号解散问题试图将多个信号的叠加分为其组成部分。本文研究了一种两阶段的方法,该方法首先使用两个凸面程序对叠加的嘈杂且无效的观察结果进行解压缩和反驳。概率误差边界是根据此过程近似单个信号的精度给出的。凸集和量规函数的极性卷积理论在分析和解决方案过程中起着核心作用。如果测量值是随机的并且噪声是界限的,则该方法稳定地恢复了低复杂性和互不连贯的信号,概率很高,并且样品的复杂性近乎很高。我们基于级别和条件梯度方法开发了一种有效的算法,该算法解决了凸的优化问题,它具有sublinear迭代复杂性和线性空间要求。对真实和合成数据的数值实验证实了该方法的理论和效率。

The signal demixing problem seeks to separate a superposition of multiple signals into its constituent components. This paper studies a two-stage approach that first decompresses and subsequently deconvolves the noisy and undersampled observations of the superposition using two convex programs. Probabilistic error bounds are given on the accuracy with which this process approximates the individual signals. The theory of polar convolution of convex sets and gauge functions plays a central role in the analysis and solution process. If the measurements are random and the noise is bounded, this approach stably recovers low-complexity and mutually incoherent signals, with high probability and with near-optimal sample complexity. We develop an efficient algorithm, based on level-set and conditional-gradient methods, that solves the convex optimization problems with sublinear iteration complexity and linear space requirements. Numerical experiments on both real and synthetic data confirm the theory and the efficiency of the approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源