论文标题
SSU:动态系统的同时状态和不确定性估计
SSUE: Simultaneous State and Uncertainty Estimation for Dynamical Systems
论文作者
论文摘要
描述许多实用动力系统的数学模型的参数由于老化或更新,磨损以及环境或服务条件的变化而容易变化。这些差异将对国家估计的准确性产生不利影响。在本文中,我们介绍了SSUE:同时量化参数不确定性的同时估算系统内部状态的同时态和不确定性估计。我们的方法涉及开发贝叶斯框架,该框架递归更新了未知状态矢量和参数不确定性的后部关节密度。为了执行实际实施框架,我们根据最大后验估计和数值牛顿的方法开发了一种计算算法。对线性系统进行了可观察性分析,并揭幕了不确定性位置估计的一致性。提供了其他仿真结果,以证明拟议的SSUE方法的有效性。
Parameters of the mathematical model describing many practical dynamical systems are prone to vary due to aging or renewal, wear and tear, as well as changes in environmental or service conditions. These variabilities will adversely affect the accuracy of state estimation. In this paper, we introduce SSUE: Simultaneous State and Uncertainty Estimation for quantifying parameter uncertainty while simultaneously estimating the internal state of a system. Our approach involves the development of a Bayesian framework that recursively updates the posterior joint density of the unknown state vector and parameter uncertainty. To execute the framework for practical implementation, we develop a computational algorithm based on maximum a posteriori estimation and the numerical Newton's method. Observability analysis is conducted for linear systems, and its relation with the consistency of the estimation of the uncertainty's location is unveiled. Additional simulation results are provided to demonstrate the effectiveness of the proposed SSUE approach.