论文标题

私人加权总和聚合

Private Weighted Sum Aggregation

论文作者

Alexandru, Andreea B., Pappas, George J.

论文摘要

由于大量数据既从用户到云服务器,也可以在用户之间发电,因此私下汇总共享数据迫切需要。本文考虑了私人加权总和与秘密权重的问题,聚合者希望在其中计算某些代理的局部数据的加权总和。根据权重上提出的隐私要求,有不同的安全多方计算方案利用信息结构。首先,当每个代理都有本地私人价值和本地私人重量时,我们会查看私人总和计划。其次,我们讨论了如何扩展先前的方案,以了解何时具有局部私人价值,但是聚合器具有相应的权重。第三,我们将代理具有其本地私人价值观的更普遍的情况处理,但是权重既不是代理人也不是聚合者知道的。它们是由想要将其私密的系统操作员生成的。我们提供了一个解决方案,即使在参与者之间的勾结下,聚集器忽略也可以实现,并且我们通过将数据分解为更少的密文来获得多维数据的更有效的通信和计算策略。最后,我们实施我们的方案,并讨论数值结果和提高效率。

As large amounts of data are circulated both from users to a cloud server and between users, there is a critical need for privately aggregating the shared data. This paper considers the problem of private weighted sum aggregation with secret weights, where an aggregator wants to compute the weighted sum of the local data of some agents. Depending on the privacy requirements posed on the weights, there are different secure multi-party computation schemes exploiting the information structure. First, when each agent has a local private value and a local private weight, we review private sum aggregation schemes. Second, we discuss how to extend the previous schemes for when the agents have a local private value, but the aggregator holds the corresponding weights. Third, we treat a more general case where the agents have their local private values, but the weights are known neither by the agents nor by the aggregator; they are generated by a system operator, who wants to keep them private. We give a solution where aggregator obliviousness is achieved, even under collusion between the participants, and we show how to obtain a more efficient communication and computation strategy for multi-dimensional data, by batching the data into fewer ciphertexts. Finally, we implement our schemes and discuss the numerical results and efficiency improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源