论文标题
Schroedinger操作员的准模式和自动偶会扩展
Quasinormal modes and self-adjoint extensions of the Schroedinger operator
论文作者
论文摘要
我们在这里重新审视通常用于计算准模式(QNM)的分析延续方法和给定潜在屏障$ V $的频率,从有限状态和各自的Schroedinger操作员的特征值开始,与潜在的潜在潜在$ -V $相关。我们考虑一个完全可溶的问题,该问题对应于具有良好定义且行为良好的QNM频谱的Poschl-Teller类型的潜在障碍,但是与分析延续获得的相关Schroedinger operator $ \ cal H $未能是自动化的。尽管$ \ cal h $承认自我偶会扩展,但我们表明,与分析性持续QNM相对应的本征态不属于任何自我接合扩展域,因此,它们不能被解释为真实的量子机械界面状态。当$ \ cal h $不可自行时,我们的结果挑战了这种类型的方法的实际使用,因为在这种情况下,我们没有任何合理的标准可以选择与分析上持续的QNM相对应的$ \ cal H $的初始特征。
We revisit here the analytical continuation approach usually employed to compute quasinormal modes (QNM) and frequencies of a given potential barrier $V$ starting from the bounded states and respective eigenvalues of the Schroedinger operator associated with the potential well corresponding to the inverted potential $-V$. We consider an exactly soluble problem corresponding to a potential barrier of the Poschl-Teller type with a well defined and behaved QNM spectrum, but for which the associated Schroedinger operator $\cal H$ obtained by analytical continuation fails to be self-adjoint. Although $\cal H$ admits self-adjoint extensions, we show that the eigenstates corresponding to the analytically continued QNM do not belong to any self-adjoint extension domain and, consequently, they cannot be interpreted as authentic quantum mechanical bounded states. Our result challenges the practical use of the this type of method when $\cal H$ fails to be self-adjoint since, in such cases, we would not have in advance any reasonable criterion to choose the initial eigenstates of $\cal H$ which would correspond to the analytically continued QNM.