论文标题

关于双刺和两个块循环的细分的评论

Remarks on the subdivisions of bispindles and two-blocks cycles in highly chromatic digraphs

论文作者

Mniny, Darine Al, Ghazal, Salman

论文摘要

a $(2+1)$ - bispindle $ b(k_1,k_2; k_3)$是两个$ xy $ -dipath的结合,各个长度的$ k_1 $和$ k_2 $,一个$ yx $ - 长度$ k_3 $的dipaths,所有这些dipaths is bepthes bepliwes is beplise by nossilly binwise binwise binwise in nossilly binwise in Binwise binwise binwise billy inthin in osthiph in ofthipt。最近,Cohen等。推测,对于每个积极整数$ k_1,k_2,k_3 $,都有一个整数$ g(k_1,k_2,k_3)$,以至于每个牢固连接的digraph都不包含$ b(k_1,k_2; k_3)$的$ b(k_1,k_2; k_3)$在$ g(k_1,k_2; k_3)中只有$ g(k_1,k_1,k_1,k_1,k_1,k_1,k_1,k_1,k_1,k_2), $ k_2 = 1 $。对于Hamiltonian Digraphs,我们证明了Cohen等人的猜想,即$ g(k_1,k_2,k_3)\ leq 4k $,其中$ k = max \ {k_1,k_2,k_2,k_3 \} $。一个两个块周期$ c(k_1,k_2)$是两个内部不连接$ xy $ - 长度$ k_1 $和$ k_2 $的联合。 Addario等。当被问及不包含两个块周期$ c(k_1,k_2)$的不包含分区的强挖掘的色数是否可以通过$ o(k_1+k_2)$限制,这仍然是一个开放的问题。假设$ k = max \ {k_1,k_2 \} $,最佳到达的上限是Kim等人,为$ 12K^2 $。在本文中,我们猜测该界限可以稍微提高到$ 4K^2 $,我们确认了某些特定情况的猜想。此外,我们为Addario等人的问题提供了一个积极的答案,该类别的digraphs具有Hamiltonian指向路径。

A $(2+1)$-bispindle $B(k_1,k_2;k_3)$ is the union of two $xy$-dipaths of respective lengths $k_1$ and $k_2$, and one $yx$-dipath of length $k_3$, all these dipaths being pairwise internally disjoint. Recently, Cohen et al. conjectured that, for every positive integers $k_1, k_2, k_3$, there is an integer $g(k_1, k_2, k_3)$ such that every strongly connected digraph not containing subdivisions of $B(k_1, k_2; k_3)$ has a chromatic number at most $g(k_1, k_2, k_3)$, and they proved it only for the case where $k_2=1$. For Hamiltonian digraphs, we prove Cohen et al.'s conjecture, namely $g(k_1, k_2, k_3)\leq 4k$, where $k=max\{k_1, k_2, k_3\}$. A two-blocks cycle $C(k_1,k_2)$ is the union of two internally disjoint $xy$-dipaths of length $k_1$ and $k_2$ respectively. Addario et al. asked if the chromatic number of strong digraphs not containing subdivisions of a two-blocks cycle $C(k_1,k_2)$ can be bounded from above by $O(k_1+k_2)$, which remains an open problem. Assuming that $k=max\{k_1,k_2\}$, the best reached upper bound, found by Kim et al., is $12k^2$. In this article, we conjecture that this bound can be slightly improved to $4k^2$ and we confirm our conjecture for some particular cases. Moreover, we provide a positive answer to Addario et al.'s question for the class of digraphs having a Hamiltonian directed path.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源