论文标题

是什么使多语言伯特多语言?

What makes multilingual BERT multilingual?

论文作者

Liu, Chi-Liang, Hsu, Tsung-Yuan, Chuang, Yung-Sung, Lee, Hung-yi

论文摘要

最近,多语言BERT在跨语性转移任务上非常出色,优于静态非上下文的单词嵌入。在这项工作中,我们提供了一项深入的实验研究,以补充现有的跨语性能力文献。我们比较了非上下文和上下文化表示模型与相同数据的跨语性能力。我们发现数据尺寸和上下文窗口大小是可转让性的关键因素。

Recently, multilingual BERT works remarkably well on cross-lingual transfer tasks, superior to static non-contextualized word embeddings. In this work, we provide an in-depth experimental study to supplement the existing literature of cross-lingual ability. We compare the cross-lingual ability of non-contextualized and contextualized representation model with the same data. We found that datasize and context window size are crucial factors to the transferability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源