论文标题

基于卵子阈值开关(OT)及其在限制性玻尔兹曼机器(RBM)中的应用,高度可观的随机神经元(RBM)

Highly-scalable stochastic neuron based on Ovonic Threshold Switch (OTS) and its applications in Restricted Boltzmann Machine (RBM)

论文作者

Im, Seong-il, Lee, Hyejin, Lee, Jaesang, Jeong, Jae-Seung, Kwak, Joon Young, Kim, Keunsu, Cho, Jeong Ho, Ju, Hyunsu, Lee, Suyoun

论文摘要

对限制性玻尔兹曼机器(RBM)的兴趣正在作为一种生成的随机人工神经网络增长,以实施一种新型的节能机器学习(ML)技术。对于RBM的硬件实现,必不可少的构建块是可靠的随机二进制神经元设备,可在Boltzmann分布后生成随机尖峰。在这里,我们提出了一个基于卵子阈值开关(OT)的高度刻度随机神经元设备,该设备利用陷阱的随机发射和捕获过程作为随机性的来源。开关概率由Boltzmann分布很好地描述,该分布可以通过操作参数来控制。作为真正的随机数发生器(TRNG)的候选人,它在美国国家标准技术研究所(NIST)统计测试套件的16次测试中(特别出版物800-22)。此外,使用模拟的RBM网络(由建议的设备组成,最大识别精度为86.07%)证明了手写数字(MNIST)的识别任务。此外,使用噪音污染的图像成功证明了图像的重建,从而导致图像消除了噪声。这些结果表明,基于OT的随机神经元设备在RBM系统中的应用中具有有希望的特性。

Interest in Restricted Boltzmann Machine (RBM) is growing as a generative stochastic artificial neural network to implement a novel energy-efficient machine-learning (ML) technique. For a hardware implementation of the RBM, an essential building block is a reliable stochastic binary neuron device that generates random spikes following the Boltzmann distribution. Here, we propose a highly-scalable stochastic neuron device based on Ovonic Threshold Switch (OTS) which utilizes the random emission and capture process of traps as the source of stochasticity. The switching probability is well described by the Boltzmann distribution, which can be controlled by operating parameters. As a candidate for a true random number generator (TRNG), it passes 15 among the 16 tests of the National Institute of Standards and Technology (NIST) Statistical Test Suite (Special Publication 800-22). In addition, the recognition task of handwritten digits (MNIST) is demonstrated using a simulated RBM network consisting of the proposed device with a maximum recognition accuracy of 86.07 %. Furthermore, reconstruction of images is successfully demonstrated using images contaminated with noises, resulting in images with the noise removed. These results show the promising properties of OTS-based stochastic neuron devices for applications in RBM systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源