论文标题

平滑分类器的认证分配鲁棒性

Certified Distributional Robustness on Smoothed Classifiers

论文作者

Yang, Jungang, Xiang, Liyao, Chen, Ruidong, Wang, Yukun, Wang, Wei, Wang, Xinbing

论文摘要

深度神经网络(DNNS)对对抗性例子攻击的鲁棒性引起了广泛关注。对于平滑的分类器,我们建议对输入分布的最糟糕的对抗性损失作为健壮性证书。与以前的证书相比,我们的证书更好地描述了平滑分类器的经验性能。通过利用二元性和平滑度属性,我们提供了易于计算的上限作为证书的替代品。我们采用嘈杂的对抗性学习程序来最大程度地减少替代损失,以提高模型鲁棒性。我们表明,我们的培训方法在理论上对分布稳健的基本分类器提供了更严格的绑定。在各种数据集上的实验进一步证明了我们方法的鲁棒性表现超过了最先进的认证或启发式方法。

The robustness of deep neural networks (DNNs) against adversarial example attacks has raised wide attention. For smoothed classifiers, we propose the worst-case adversarial loss over input distributions as a robustness certificate. Compared with previous certificates, our certificate better describes the empirical performance of the smoothed classifiers. By exploiting duality and the smoothness property, we provide an easy-to-compute upper bound as a surrogate for the certificate. We adopt a noisy adversarial learning procedure to minimize the surrogate loss to improve model robustness. We show that our training method provides a theoretically tighter bound over the distributional robust base classifiers. Experiments on a variety of datasets further demonstrate superior robustness performance of our method over the state-of-the-art certified or heuristic methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源