论文标题

在知识图中用于多跳的逻辑推理的beta嵌入

Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs

论文作者

Ren, Hongyu, Leskovec, Jure

论文摘要

人工智能中的基本问题之一是对知识图(KG)捕获的事实进行复杂的多跳逻辑推理。这个问题具有挑战性,因为KGS可能是巨大的和不完整的。最近的方法将KG实体嵌入了低维空间,然后使用这些嵌入来找到答案实体。但是,如何处理任意的一阶逻辑(FOL)查询是一个杰出的挑战,因为当前方法仅限于FOL操作员的一个子集。特别是,不支持否定操作员。当前方法的另一个局限性还在于它们不能自然地对不确定性进行建模。在这里,我们提出了Betae,这是一个概率的嵌入框架,用于回答KGS上的任意查询。 BETAE是第一个可以处理一组一阶逻辑操作集的方法:连词($ \ wedge $),脱节($ \ vee $)和否定($ \ neg $)。 BETAE的一个关键见解是将概率分布与有限的支持,特别是beta分布,并嵌入查询/实体作为分布,从而使我们还可以忠实地为不确定性建模。神经操作员在概率嵌入中在嵌入空间中进行逻辑操作。我们证明了BETAE在回答三个不完整的KGS上任意查询时的表现。尽管更笼统,但BETAE还将相对性能提高了25.4%,而不是当前最新的kg推理方法,这些方法只能在而无需否定的情况下处理连接性查询。

One of the fundamental problems in Artificial Intelligence is to perform complex multi-hop logical reasoning over the facts captured by a knowledge graph (KG). This problem is challenging, because KGs can be massive and incomplete. Recent approaches embed KG entities in a low dimensional space and then use these embeddings to find the answer entities. However, it has been an outstanding challenge of how to handle arbitrary first-order logic (FOL) queries as present methods are limited to only a subset of FOL operators. In particular, the negation operator is not supported. An additional limitation of present methods is also that they cannot naturally model uncertainty. Here, we present BetaE, a probabilistic embedding framework for answering arbitrary FOL queries over KGs. BetaE is the first method that can handle a complete set of first-order logical operations: conjunction ($\wedge$), disjunction ($\vee$), and negation ($\neg$). A key insight of BetaE is to use probabilistic distributions with bounded support, specifically the Beta distribution, and embed queries/entities as distributions, which as a consequence allows us to also faithfully model uncertainty. Logical operations are performed in the embedding space by neural operators over the probabilistic embeddings. We demonstrate the performance of BetaE on answering arbitrary FOL queries on three large, incomplete KGs. While being more general, BetaE also increases relative performance by up to 25.4% over the current state-of-the-art KG reasoning methods that can only handle conjunctive queries without negation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源