论文标题

征费驱动的随机微分方程的双Yamada-Watanabe定理

A Dual Yamada-Watanabe Theorem for Levy driven stochastic differential equations

论文作者

Criens, David

论文摘要

我们证明了Yamada-Watanabe定理的一维随机微分方程,该方程是由准左连续半段驱动的,具有独立的增量。特别是,我们的结果涵盖了由(时间均匀)征税过程驱动的随机微分方程。更确切地说,我们证明,弱独特性,即法律的独特性,意味着弱的关节唯一性,即解决方案过程及其驱动因素的法律唯一性。

We prove a dual Yamada-Watanabe theorem for one-dimensional stochastic differential equations driven by quasi-left continuous semimartingales with independent increments. In particular, our result covers stochastic differential equations driven by (time-inhomogeneous) Levy processes. More precisely, we prove that weak uniqueness, i.e. uniqueness in law, implies weak joint uniqueness, i.e. joint uniqueness in law for the solution process and its driver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源