论文标题
征费驱动的随机微分方程的双Yamada-Watanabe定理
A Dual Yamada-Watanabe Theorem for Levy driven stochastic differential equations
论文作者
论文摘要
我们证明了Yamada-Watanabe定理的一维随机微分方程,该方程是由准左连续半段驱动的,具有独立的增量。特别是,我们的结果涵盖了由(时间均匀)征税过程驱动的随机微分方程。更确切地说,我们证明,弱独特性,即法律的独特性,意味着弱的关节唯一性,即解决方案过程及其驱动因素的法律唯一性。
We prove a dual Yamada-Watanabe theorem for one-dimensional stochastic differential equations driven by quasi-left continuous semimartingales with independent increments. In particular, our result covers stochastic differential equations driven by (time-inhomogeneous) Levy processes. More precisely, we prove that weak uniqueness, i.e. uniqueness in law, implies weak joint uniqueness, i.e. joint uniqueness in law for the solution process and its driver.