论文标题

从树木到条形码再返回:理论和统计观点

From trees to barcodes and back again: theoretical and statistical perspectives

论文作者

Kanari, Lida, Garin, Adélie, Hess, Kathryn

论文摘要

拓扑数据分析的方法已成功地应用于广泛的字段中,以根据拓扑描述符(例如持续图图)提供了复杂数据集结构的有用摘要。虽然有许多用于计算拓扑描述符的强大技术,但逆问题,即从拓扑描述符中恢复输入数据,已被证明是具有挑战性的。在本文中,我们详细研究了拓扑形态描述符(TMD),该描述符(TMD)为嵌入在欧几里得空间中的任何树和TMD的随机逆,持久图分配了持久图,TMD是拓扑神经元合成(TNS)算法,从而获得了两者之间的关系,从而获得了拓扑神经元合成(TNS)算法。我们提出了一种使用对称组对条形码进行分类的新方法,该方法提供了一种具体的语言来制定我们的结果。我们研究了TNS从其TMD中恢复几何树的多大程度,并描述了不同类型的噪声对从持久图中生成树生成过程的影响。此外,我们证明TNS算法相对于特定类型的噪声是稳定的。

Methods of topological data analysis have been successfully applied in a wide range of fields to provide useful summaries of the structure of complex data sets in terms of topological descriptors, such as persistence diagrams. While there are many powerful techniques for computing topological descriptors, the inverse problem, i.e., recovering the input data from topological descriptors, has proved to be challenging. In this article we study in detail the Topological Morphology Descriptor (TMD), which assigns a persistence diagram to any tree embedded in Euclidean space, and a sort of stochastic inverse to the TMD, the Topological Neuron Synthesis (TNS) algorithm, gaining both theoretical and computational insights into the relation between the two. We propose a new approach to classify barcodes using symmetric groups, which provides a concrete language to formulate our results. We investigate to what extent the TNS recovers a geometric tree from its TMD and describe the effect of different types of noise on the process of tree generation from persistence diagrams. We prove moreover that the TNS algorithm is stable with respect to specific types of noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源