论文标题
希尔伯特(Hilbert
Hilbert Scheme of a Pair of Skew Lines on Cubic Threefolds
论文作者
论文摘要
平滑立方三倍上的一对不相交线决定了希尔伯特方案的不可还原组成部分。我们证明,该组件对对角线上的Fano品种的对称产物的对称产物具有同构。我们还研究了它与超平面截面上的线和奇异性的几何形状及其与Bridgeland模量空间的关系。
A pair of disjoint lines on a smooth cubic threefold determines an irreducible component of the Hilbert scheme. We prove that this component is smooth and isomorphic to the blow-up of the symmetric product of Fano varieties of lines on the diagonal. We also study its relation to the geometry of lines and singularities on the hyperplane sections and its relation to Bridgeland moduli spaces.