论文标题

关于压缩 - 奥科术技术以及顺序工作证明后的量词安全性

On the Compressed-Oracle Technique, and Post-Quantum Security of Proofs of Sequential Work

论文作者

Chung, Kai-Min, Fehr, Serge, Huang, Yu-Hsuan, Liao, Tai-Ning

论文摘要

我们重新访问了由Zhandry引入的所谓压缩甲骨文技术,用于分析量子随机甲骨文模型(QROM)中的量子算法。首先,我们提供了该技术的简洁阐述,该技术很容易扩展到并行Query QROM,在每个查询过程中,所考虑的算法可能会在并行中对QROM进行一些查询。 QROM的这种变体允许进行更细粒度的查询复合度分析。 我们的主要技术贡献是一个框架,简化了压缩甲骨文技术的(平行质量概括)来证明查询复杂性结果。有了我们的框架,只要适用,就可以通过纯粹的经典推理证明量子查询复杂性下限。不仅如此,对于典型的例子,引起经典界限的关键经典观察足以结论相应的量子界限。 我们在一些示例中进行了证明,恢复已知结果(例如平行格罗弗的最佳性),但也获得了新的结​​果(例如并行BHT碰撞搜索的最佳性)。我们的主要目标是找到一个$ q $链,少于$ q $并行查询,即序列$ x_0,x_1,\ ldots,x_q $,带有$ x_i = h(x__ {i-1})$,用于所有$ 1 \ leq i \ leq leq q $。 在顺序工作证明的背景下,找到哈希链的上述问题至关重要。确实,作为我们技术的具体加密应用,我们证明了Cohen和Pietrzak提出的“顺序工作的简单证明”仍然安全地免受量子攻击。这样的分析不仅仅是插入我们的新界限的问题;需要根据量子攻击对整个协议进行分析。多亏了我们的框架,现在可以通过纯粹的经典推理来完成。

We revisit the so-called compressed oracle technique, introduced by Zhandry for analyzing quantum algorithms in the quantum random oracle model (QROM). To start off with, we offer a concise exposition of the technique, which easily extends to the parallel-query QROM, where in each query-round the considered algorithm may make several queries to the QROM in parallel. This variant of the QROM allows for a more fine-grained query-complexity analysis. Our main technical contribution is a framework that simplifies the use of (the parallel-query generalization of) the compressed oracle technique for proving query complexity results. With our framework in place, whenever applicable, it is possible to prove quantum query complexity lower bounds by means of purely classical reasoning. More than that, for typical examples the crucial classical observations that give rise to the classical bounds are sufficient to conclude the corresponding quantum bounds. We demonstrate this on a few examples, recovering known results (like the optimality of parallel Grover), but also obtaining new results (like the optimality of parallel BHT collision search). Our main target is the hardness of finding a $q$-chain with fewer than $q$ parallel queries, i.e., a sequence $x_0, x_1,\ldots, x_q$ with $x_i = H(x_{i-1})$ for all $1 \leq i \leq q$. The above problem of finding a hash chain is of fundamental importance in the context of proofs of sequential work. Indeed, as a concrete cryptographic application of our techniques, we prove that the "Simple Proofs of Sequential Work" proposed by Cohen and Pietrzak remains secure against quantum attacks. Such an analysis is not simply a matter of plugging in our new bound; the entire protocol needs to be analyzed in the light of a quantum attack. Thanks to our framework, this can now be done with purely classical reasoning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源