论文标题

使用条件耦合gan匹配的跨光虹膜匹配

Cross-Spectral Iris Matching Using Conditional Coupled GAN

论文作者

Mostofa, Moktari, Taherkhani, Fariborz, Dawson, Jeremy, Nasrabadi, Nasser M.

论文摘要

跨光谱虹膜识别正在成为一种有前途的生物识别方法,可以证明个体的身份。但是,与单波段近红外(NIR)匹配相比,在不同光谱带上获得的匹配虹膜图像由于在NIR和视觉光(VIS)光谱中获得的虹膜图像之间的光谱差距而显示出明显的性能降低。尽管研究人员最近专注于基于深度学习的方法来恢复不变的代表性特征以获得更准确的识别性能,但现有方法无法实现商业应用所需的预期准确性。因此,在本文中,我们提出了一个有条件的耦合生成对抗网络(CPGAN)架构,以通过将VIS和NIR IRIS图像投影到低维嵌入域,以探索它们之间的隐藏关系,以识别跨光虹膜识别。有条件的CPGAN框架由一对基于GAN的网络组成,一个网络负责在可见域中检索图像,而其他负责在NIR域中检索图像的网络。两个网络都试图将数据映射到一个共同的嵌入子空间中,以确保来自同一主题的两个虹膜模态的特征向量之间的最大成对相似性。为了证明我们提出的方法的有用性,将Polyu数据集获得的广泛实验结果与现有的最新跨光谱识别方法进行了比较。

Cross-spectral iris recognition is emerging as a promising biometric approach to authenticating the identity of individuals. However, matching iris images acquired at different spectral bands shows significant performance degradation when compared to single-band near-infrared (NIR) matching due to the spectral gap between iris images obtained in the NIR and visual-light (VIS) spectra. Although researchers have recently focused on deep-learning-based approaches to recover invariant representative features for more accurate recognition performance, the existing methods cannot achieve the expected accuracy required for commercial applications. Hence, in this paper, we propose a conditional coupled generative adversarial network (CpGAN) architecture for cross-spectral iris recognition by projecting the VIS and NIR iris images into a low-dimensional embedding domain to explore the hidden relationship between them. The conditional CpGAN framework consists of a pair of GAN-based networks, one responsible for retrieving images in the visible domain and other responsible for retrieving images in the NIR domain. Both networks try to map the data into a common embedding subspace to ensure maximum pair-wise similarity between the feature vectors from the two iris modalities of the same subject. To prove the usefulness of our proposed approach, extensive experimental results obtained on the PolyU dataset are compared to existing state-of-the-art cross-spectral recognition methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源