论文标题

使用条件生成的对抗网络来减少延迟在机器人伸缩过程中的影响

Using Conditional Generative Adversarial Networks to Reduce the Effects of Latency in Robotic Telesurgery

论文作者

Sachdeva, Neil, Klopukh, Misha, Clair, Rachel St., Hahn, William

论文摘要

外科机器人的引入带来了手术程序的进步。远程伸缩式手术的应用包括在贫困地区建立医疗诊所,到将机器人放在国外的军事热点中,在军事热点可能有限的医疗体验和多样性。无线连通性差可能会导致延迟延迟,称为外科医生的输入和机器人采取的动作之间的延迟。在手术中,任何微型延迟都会严重伤害患者,在某些情况下会导致死亡。一种是提高安全性是使用深度学习帮助计算机视觉来减轻潜伏期的影响。尽管当前的手术机器人使用校准的传感器来测量武器和工具的位置,但在这项工作中,我们提出了一种纯粹的光学方法,该方法可以测量与患者组织相关的工具位置。这项研究旨在产生一个神经网络,该神经网络允许机器人检测其自己的机械操纵臂。有条件的生成对抗网络(CGAN)在2015年的Endovis仪器挑战中训练了1107个模拟胃肠道机器人手术数据,并针对每个框架进行了相应的手绘标签。当在新的测试数据上运行时,网络在视觉上与手绘标签一致的输入图像的接近完美标签,并且能够在299毫秒内完成。然后,这些精确生成的标签可以用作简化的标识符,以使机器人跟踪其自己的受控工具。这些结果显示了有条件甘斯作为一种反应机制的潜力,因此机器人可以检测其手臂何时在患者内部的操作区域外移动。该系统允许更准确地监测与患者组织相关的手术仪器的位置,从而增加了成功伸缩系统不可或缺的安全措施。

The introduction of surgical robots brought about advancements in surgical procedures. The applications of remote telesurgery range from building medical clinics in underprivileged areas, to placing robots abroad in military hot-spots where accessibility and diversity of medical experience may be limited. Poor wireless connectivity may result in a prolonged delay, referred to as latency, between a surgeon's input and action a robot takes. In surgery, any micro-delay can injure a patient severely and in some cases, result in fatality. One was to increase safety is to mitigate the effects of latency using deep learning aided computer vision. While the current surgical robots use calibrated sensors to measure the position of the arms and tools, in this work we present a purely optical approach that provides a measurement of the tool position in relation to the patient's tissues. This research aimed to produce a neural network that allowed a robot to detect its own mechanical manipulator arms. A conditional generative adversarial networks (cGAN) was trained on 1107 frames of mock gastrointestinal robotic surgery data from the 2015 EndoVis Instrument Challenge and corresponding hand-drawn labels for each frame. When run on new testing data, the network generated near-perfect labels of the input images which were visually consistent with the hand-drawn labels and was able to do this in 299 milliseconds. These accurately generated labels can then be used as simplified identifiers for the robot to track its own controlled tools. These results show potential for conditional GANs as a reaction mechanism such that the robot can detect when its arms move outside the operating area within a patient. This system allows for more accurate monitoring of the position of surgical instruments in relation to the patient's tissue, increasing safety measures that are integral to successful telesurgery systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源