论文标题
用于协作战斗的多雷达跟踪优化
Multi-Radar Tracking Optimization for Collaborative Combat
论文作者
论文摘要
通过更有效的交叉提取,超过集中式命令和控制,协作网的智能网格加速了杀死链。在本文中,我们提出了两种基于黑盒优化和强化学习(RL)的分散力集协调的基于奖励的学习方法。为了使RL方法可进行处理,我们使用证明与初始配方相同的问题简化了问题。我们将这些技术应用于模拟,其中雷达可以同时遵循多个目标,并表明他们可以通过将它们与贪婪的基线进行比较来学习隐式合作。
Smart Grids of collaborative netted radars accelerate kill chains through more efficient cross-cueing over centralized command and control. In this paper, we propose two novel reward-based learning approaches to decentralized netted radar coordination based on black-box optimization and Reinforcement Learning (RL). To make the RL approach tractable, we use a simplification of the problem that we proved to be equivalent to the initial formulation. We apply these techniques on a simulation where radars can follow multiple targets at the same time and show they can learn implicit cooperation by comparing them to a greedy baseline.