论文标题

从点云序列对零件移动的自我监督学习

Self-Supervised Learning of Part Mobility from Point Cloud Sequence

论文作者

Shi, Yahao, Cao, Xinyu, Zhou, Bin

论文摘要

零件移动性分析是实现对3D对象的功能理解所需的重要方面。从3D对象的连续部分运动中获得部分移动是很自然的。在这项研究中,我们引入了一种自我监督的方法,用于分割运动零件并从代表动态对象的点云序列中预测其运动属性。为了充分利用点云序列中的时空信息,我们通过在序列的连续帧之间使用相关而生成轨迹,而不是直接处理点云。我们提出了一种名为Pointrnn的新型神经网络体系结构,以学习轨迹的特征表现以及它们的部分动作。我们对各种任务进行评估,包括运动零件分割,运动轴预测和运动范围估计。结果表明,我们的方法在合成数据集和实际数据集上都优于先前的技术。此外,我们的方法具有推广到新的和看不见的对象的能力。重要的是要强调,不需要知道任何先前的形状结构,先前的形状类别信息或形状取向。据我们所知,这是关于深度学习的第一项研究,是从动态对象的点云序列中提取部分移动性。

Part mobility analysis is a significant aspect required to achieve a functional understanding of 3D objects. It would be natural to obtain part mobility from the continuous part motion of 3D objects. In this study, we introduce a self-supervised method for segmenting motion parts and predicting their motion attributes from a point cloud sequence representing a dynamic object. To sufficiently utilize spatiotemporal information from the point cloud sequence, we generate trajectories by using correlations among successive frames of the sequence instead of directly processing the point clouds. We propose a novel neural network architecture called PointRNN to learn feature representations of trajectories along with their part rigid motions. We evaluate our method on various tasks including motion part segmentation, motion axis prediction and motion range estimation. The results demonstrate that our method outperforms previous techniques on both synthetic and real datasets. Moreover, our method has the ability to generalize to new and unseen objects. It is important to emphasize that it is not required to know any prior shape structure, prior shape category information, or shape orientation. To the best of our knowledge, this is the first study on deep learning to extract part mobility from point cloud sequence of a dynamic object.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源