论文标题
$ \ int_0^\ infty \ left(\ frac {\ sin x} {x} {x} \ right)^n \; dx $的渐近评估
Asymptotic evaluation of $\int_0^\infty\left(\frac{\sin x}{x}\right)^n\;dx$
论文作者
论文摘要
我们认为积分$ \ int_0^\ infty \ left(\ frac {\ sin x} {x} {x} \ right)^n \; dx $作为正整数$ n $的函数。我们表明,存在$ \ frac {1} {n} $中的渐近系列,并将本系列的第一项与绑定的显式错误一起计算。
We consider the integral $\int_0^\infty\left(\frac{\sin x}{x}\right)^n\;dx$ as a function of the positive integer $n$. We show that there exists an asymptotic series in $\frac{1}{n}$ and compute the first terms of this series together with an explicit error bound.