论文标题
使用粒子过滤在FPGA上进行机器人导航的源定位,并不精确的二进制测量
Source localization using particle filtering on FPGA for robotic navigation with imprecise binary measurement
论文作者
论文摘要
粒子过滤是一种递归的贝叶斯估计技术,最近在跟踪和本地化应用方面越来越受欢迎。它使用蒙特卡洛模拟,已证明是一种非常可靠的技术来对物理系统的非高斯和非线性元素进行建模。由于非分析性和非参数性质,粒子过滤器的表现优于非高斯和非线性设置中的Kalman过滤器,例如Kalman过滤器。但是,粒子过滤器的显着缺点是它们的计算复杂性,它抑制了它们在常规CPU或基于DSP的实现方案中的实时应用中的使用。本文提出了对现有粒子滤清器算法的修改,并提出了高速和专用的硬件体系结构。该体系结构在设计中结合了管道和并行化,以大大减少执行时间。对于源本地化问题,对设计进行了验证,其中我们使用在硬件上实现的粒子滤波器算法估算了源的位置。验证设置依赖于无人接地车辆(UGV),其顶部有光电二极管外壳来感知并定位光源。我们使用Artix-7现场可编程栅极阵列(FPGA)进行了原型设计,并提供了建议系统的资源利用率。此外,我们显示了高速体系结构的执行时间和估计准确性,并观察到计算时间的显着减少。我们在FPGA上的粒子过滤器实现是可扩展的,模块化的,较低的执行时间约为5.62 US处理1024个粒子,并且可以用于实时应用程序。
Particle filtering is a recursive Bayesian estimation technique that has gained popularity recently for tracking and localization applications. It uses Monte Carlo simulation and has proven to be a very reliable technique to model non-Gaussian and non-linear elements of physical systems. Particle filters outperform various other traditional filters like Kalman filters in non-Gaussian and non-linear settings due to their non-analytical and non-parametric nature. However, a significant drawback of particle filters is their computational complexity, which inhibits their use in real-time applications with conventional CPU or DSP based implementation schemes. This paper proposes a modification to the existing particle filter algorithm and presents a highspeed and dedicated hardware architecture. The architecture incorporates pipelining and parallelization in the design to reduce execution time considerably. The design is validated for a source localization problem wherein we estimate the position of a source in real-time using the particle filter algorithm implemented on hardware. The validation setup relies on an Unmanned Ground Vehicle (UGV) with a photodiode housing on top to sense and localize a light source. We have prototyped the design using Artix-7 field-programmable gate array (FPGA), and resource utilization for the proposed system is presented. Further, we show the execution time and estimation accuracy of the high-speed architecture and observe a significant reduction in computational time. Our implementation of particle filters on FPGA is scalable and modular, with a low execution time of about 5.62 us for processing 1024 particles and can be deployed for real-time applications.