论文标题
螺旋MATHIEU-GAUSS矢量模式的实验生成
Experimental generation of Helical Mathieu-Gauss vector modes
论文作者
论文摘要
向量模式代表了最一般的光状态,在这种光中,空间和极化自由度以不可分离的方式耦合。至关重要的是,虽然极化仅限于双维空间,但空间自由度可以采用任何空间轮廓。但是,大多数一代和应用技术主要限于具有极性圆柱体对称性的空间模式,例如laguerre-和Bessel-Gauss模式。在此手稿中,我们提出了一种新颖的矢量模式,其空间自由度在椭圆形圆柱坐标的螺旋式Mathieu-gauss束中编码。我们首先从理论上介绍这些模式,并在高阶庞加莱球体上概述它们的几何表示。稍后,我们使用对数字微旋转器件的使用,展示了它们的实验生成。最后,我们使用基于量子力学工具的现代方法对同一方法进行定性和定量表征。值得一提的是,非极性矢量梁在各种应用中高度满足,例如光学诱捕和光学通信。
Vector modes represent the most general state of light in which, the spatial and polarisation degrees of freedom are coupled in a non-separable way. Crucially, while polarisation is limited to a bi-dimensional space, the spatial degree of freedom can take any spatial profile. However, most generation and application techniques are mainly limited to spatial modes with polar cylindrical symmetry, such as Laguerre- and Bessel-Gauss modes. In this manuscript we put forward a novel class of vector modes with its spatial degree of freedom encoded in the set of helical Mathieu-Gauss beams of the elliptical cylindrical coordinates. We first introduce these modes theoretically and outline their geometric representation on the higher-order Poincaré sphere. Later on, we demonstrate their experimental generation using a polarisation-insensitive technique comprising the use of a digital micromirror device. Finally, we provide with a qualitative and a quantitative characterisation of the same using modern approaches based on quantum mechanics tools. It is worth mentioning that non-polar vector beams are highly desired in various applications, such as optical trapping and optical communications.