论文标题

$ d+1 $尺寸的随机双曲图

Random hyperbolic graphs in $d+1$ dimensions

论文作者

Budel, Gabriel, Kitsak, Maksim, Aldecoa, Rodrigo, Zuev, Konstantin, Krioukov, Dmitri

论文摘要

我们考虑在任何维度$ d+1 \ geq 2 $的双曲线空间中随机双曲线图。我们提出了模型参数的重新缩放,该模型参数将任何维度的随机双曲图模型投入到统一的数学框架上,从而使程度分布相对于维度不变。与学位分布不同,聚类的确取决于尺寸,在$ d \ rightarrow \ infty $下降至0。我们分析了模型的所有其他限制机制,并发布了一个软件包,该软件包在任何维度的双曲线空间中生成随机双曲线图及其限制。

We consider random hyperbolic graphs in hyperbolic spaces of any dimension $d+1\geq 2$. We present a rescaling of model parameters that casts the random hyperbolic graph model of any dimension to a unified mathematical framework, leaving the degree distribution invariant with respect to the dimension. Unlike the degree distribution, clustering does depend on the dimension, decreasing to 0 at $d \rightarrow \infty$. We analyze all of the other limiting regimes of the model, and we release a software package that generates random hyperbolic graphs and their limits in hyperbolic spaces of any dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源