论文标题

使用机器学习来纠正数据同化和预测应用程序中的模型错误

Using machine learning to correct model error in data assimilation and forecast applications

论文作者

Farchi, Alban, Laloyaux, Patrick, Bonavita, Massimo, Bocquet, Marc

论文摘要

使用机器学习(ML)方法重建系统动力学的想法是地球科学研究中最新研究的主题,其中关键输出是一种替代模型,旨在模仿动态模型。为了以严格的方式处理稀疏和嘈杂的观察结果,可以将ML与数据同化(DA)合并。这产生了一类迭代方法,在每个迭代中,在每个迭代中,da步骤都吸收了观测值,并与ML步骤交替以学习DA分析的基本动力学。在本文中,我们建议使用此方法来纠正现有的基于知识的模型的错误。实际上,由此产生的替代模型是原始(基于知识)模型和ML模型之间的混合模型。我们在数值上使用二维,二维准地球通道模型来证明该方法的可行性。模型误差是通过扰动参数的方式引入的。 DA步骤是使用强构造4D-VAR算法执行的,而ML步骤是使用深度学习工具执行的。 ML模型能够学习模型误差的很大一部分,并且由此产生的混合替代模型会产生更好的短到中端预测。此外,与使用原始模型相比,使用混合替代模型进行DA的DA产生的分析要好得多。

The idea of using machine learning (ML) methods to reconstruct the dynamics of a system is the topic of recent studies in the geosciences, in which the key output is a surrogate model meant to emulate the dynamical model. In order to treat sparse and noisy observations in a rigorous way, ML can be combined to data assimilation (DA). This yields a class of iterative methods in which, at each iteration a DA step assimilates the observations, and alternates with a ML step to learn the underlying dynamics of the DA analysis. In this article, we propose to use this method to correct the error of an existent, knowledge-based model. In practice, the resulting surrogate model is an hybrid model between the original (knowledge-based) model and the ML model. We demonstrate numerically the feasibility of the method using a two-layer, two-dimensional quasi-geostrophic channel model. Model error is introduced by the means of perturbed parameters. The DA step is performed using the strong-constraint 4D-Var algorithm, while the ML step is performed using deep learning tools. The ML models are able to learn a substantial part of the model error and the resulting hybrid surrogate models produce better short- to mid-range forecasts. Furthermore, using the hybrid surrogate models for DA yields a significantly better analysis than using the original model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源